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1. Introduction — Motivations

(Q, F,F,P) — a complete filtered probability space

W(-) — a one-dimensional standard Brownian motion

F = {F:}+>0 — natural filtration of W(-), augmented by all
P-null sets

Consider FSDE:

dX(t) = b(t, X(t))dt + o(t, X(t))dW(t),
X(0) = x.

(1.1)
Equivalent to:

(1.2) X(i.“)zx—i—/0 b(s,X(s))dS#—/0 a(s, X(s))dW(s).

General forward stochastic Volterra integral equation: (FSVIE)

(1.3) X(t) = go(t)+/0 b(t,s,X(s))ds+/0 o(t,s, X(s))dW(s).



e In general, FSVIE (1.3) cannot be transformed into a form of
FSDE (1.1).

e FSVIE (1.3) allows some long-range dependence on the noises.

e Could allow o(t,s, X(s)) to be F;-measurable, still might have
adapted solutions (Pardoux—Protter, 1990).

e May model wealth process involving investment delay, etc.
(Duffie-Huang, 1986).



Consider BSDE:

dY(t)=—g(t, Y(t), Z(t))dt+Z(t)dW(t), te]0,T],
Y(T)=¢.

(1.4)

e Linear case was introduced by Bismut (1973).

e Nonlinear case was introduced by Pardoux—Peng (1990).

e Can be applied to (European) contingent claim pricing,
stochastic differential utility, dynamic risk measures,...

e Leads to nonlinear Feynman-Kac formula,
pointwise convergence in homogenization problems,
nonlinear expectation, ...



BSDE (1.4) is equivalent to

T T
(15)  Y()=¢+ /t a(s, Y(s), Z(s))ds — /t Z(s)dW(s).

Called a backward stochastic Volterra integral equation (BSVIE).

Recall:

(1.2) X(t):x+/0t b(s,X(s))ds+/Ota(s,X(s))dW(s).

(1.3) X(t) = ap(t)—&-/Otb(t,s,X(s))ds—l—/Oto(t,s,X(s))dW(s).

Question:

What is the analog of (1.3) for (1.5) as (1.3) for (1.2)7



A Proposed Form:

-
Y(t) = ¢(t) —I—/ g(t,s, Y(s),Z(t,s),Z(s,t))ds
(1.6) t

_ /T Z(t,5)dW(s), te[o,T],

(Y(-),Z(-,-)) — unknown process

Remarks:

e The term Z(t,s) depends on t and s;

e The drift depends on both Z(t,s) and Z(s, t).
e (1.6) is strictly more general than BSDE (1.5).
e ¢)(-) does not have to be F-adapted.

e Need Z(t,-) to be F-adapted, and

-
/ |Z(t,s)]?ds < o0, ae. t €0, T], a.s.
0



By taking conditional expectation on (1.6), we have

-
Y(t) = E{w(t) +/ g(t,s, Y(s), Z(t,s), Z(s, t))ds!]—}]
t
This leads to the second interesting motivation.

e Expected discounted utility (process) has the form:
T
Y(t) = E[gefﬁ(T*t) +/ u(C(s))efﬁ(S*t)ds‘ft}, tel0, T].

t

C(-) — consumption process, u(-) — utility function
(B — discount rate, £ — terminal time wealth

e Expected discounted utility is equivalent to a linear BSDE:

T T
Y(t) = §+/t [ = BY(s)+ C(u(s))]ds — /t Z(s)dW(s).



o e P(5=1) exhibits a time-consistent memory effect. If the memory
is not time-consistent, the utility process will not be a solution
to a BSDE! But, it might be a solution to a BSVIE!

e Duffie-Epstein (1992) introduced stochastic differential utility:

Y(t) = E[g n /tTg(s, Y(s))ds\ft}, teo, 7).

which is equivalent to a nonlinear BSDE:

T T
Y(t) =€+ /t g(s, Y(s))ds — /t Z(s)dW(s).



The Third Motivation:
Consider controlled FSVIE:

X(t) = ¢(t) +/0 b(t,s, X(s), u(s))ds

+/0t0(f757X(5)7U(S))dW(S)‘

To state the first order necessary condition (of Pontryagin type)
for the corresponding optimal control problem, one needs the
adjoint equation which should be a BSVIE.



2. Definition of Solutions.

Let H=R™ R™*9 etc., with norm | - |.
LP(Q)={¢:Q— H| e Fr El¢f < oo},

L2((0,T)xQ) ={p: (0, T)xQ— H |
-
@ is B([0, T]) ® Fr-measurable, IE/ lp(t)|?dt < oo},
0
L3(0, T) = {p € L*((0, T) x Q), ¢(") is F-adapted }.

L%(0, T; Lz(0, T)) = {Z; 0, T]2 xQ—H |
Z(t,-) is F-adapted, a.e. t € [0, T],

// |Z(t,s)|?dsdt < oo}



Recall:

-
Y(t) = (1) +/ g(t,s, Y(s),Z(t,s),Z(s,t))ds
(2.1) t

_/TZ(t, s)dW(s),  tel[o0,T],

Similar to BSDEs, it seems to be reasonable to introduce

Definition 2.1. (Y,Z) € L2(0, T) x L2(0, T; L2(0, T)) satisfying
(2.1) is called an adapted solution of BSVIE (2.1).



Example 2.2. Consider BSVIE:

(2.2) Y(t):/TZ(s,t)ds—/TZ(t,s)dW(s), telo, Tl
We can check that

{ V()= (T 00,  te[o.T],
2(t.5) = hog()C(s).  (t.s)€[0.T] % [0, T],

is an adapted solution of (2.2) for any ((-) € L2(0, T;R). Thus,
adapted solutions are not unique!



Observation:

-
Y(t) = (t) +/ g(t,s, Y(s),Z(t,s),Z(s,t))ds
(2.1) t

T
—/ Z(t,s)dW(s), te]o,T],
t
does not give enough “restrictions” on Z(t,s) with
0<s<t<T.
Need to “specify” Z(t,s) for 0 <s<t< T.

Definition 2.3. (Y, Z) € [2(0, T) x L2(0, T; L3(0, T)) is called
an adapted M-solution of (2.1) if (2.1) is satisfied and also

(2.3) Y(t):EY(t)—l—/tZ(t,s)dW(s), te[o, 7]
0



3. Well-posedness of BSVIEs.

(H1) Map g is measurable satisfying

T T 2
IE/ (/ 8(t.5,0,0)]ds) dt < oo,
0 t

and exists a (deterministic) function L with

T
sup/ L(t,s)*"ds < oo,
te[0,T] J ¢t

for some £ > 0 such that

|g(t)s7.yaz7€) —g(t,S,_)_/72,§)|
< L(t,s)(ly =yl + 1z =2 +1¢ = {).



Theorem 3.1. Let (H1) hold. Then V%, (2.1) admits a unique
adapted M-solution (Y, Z). Moreover: for any r € [0, T],

T T T
(3.1) /r E|Yit)|2dt+/r /rTE|Z(tT’S)|2det |
< C[/r E|¢(t)l2dt+/r (/r |g(t,s,o,o)|ds) dt]

If (Y, Z) is the adapted M-solution corresponding to 1, then

. /rTEIY( t)] dt+// E|Z(t,s) — Z(t,s)|?dsdt

<C/ Ely(t) — §(t)[2dt,  Vre [0, T].



A Difference between BSDEs and BSVIEs:
For BSDE

T T
Y(t) = £+/t g(s,Y(s),Z(s))ds — /f Z(s)dW(s)

T

g
- / g(s, Y(s), Z(s))ds — / Z(s)dW(s)

T—6 T—6

T—5 T—96
_|_/t g(s,Y(s),Z(s))ds —/t Z(s)dW(s)

T-5 T—5
—Y(T-08)+ / &(s, Y(s), Z(s))ds— /t Z(s)dW(s),

t

tel0, T -9

Thus, one can obtain the solvability on [T — §, T], then on
[T —25, T — 0], etc., to get solvability on [0, T].



For BSVIE: (with t € [0, T — 4])
T T
Y(t) = 1/1(t)+/t g(t,s, Y(s), Z(t,s), Z(s, t))ds—/t Z(t,s)dW(s)
T

.
:z/J(t)+/5g(t,s, Y(s), Z(t, s), Z(s, t))ds—/ Z(t, s)dW(s)

T-6

+ / " (ts Y(s). Z(t. ), Z(s. £))ds / " 2 )aw(s)

T—6 T—o

= J(t) +/t g(t,s, Y(s),Z(t,s), Z(s,t))ds —/t Z(t,s)dW(s),

where it is not obvious if 9(t) is/can be chosen Fr_s-measurable!



4. Properties of Solutions.
e A Duality Principle

ODE case: Consider

(4.1) x(t) = Ax(t) + f(t), x(0)=0,
(4.2) y(t) = —ATy(t) - g(t), y(T)=0.
Then

Thus,

T T
(4.3) /0 (x(t). g(t)) dt = /0 (y(), () dt.
e (4.2) is called an adjoint equation of (4.1).

e (4.3) is called a duality between (4.1) and (4.2).

e (linear) SDE and BSDE have a similar duality principle. It6’s
formula is commonly used.



Theorem 4.1. Let ¢ € L2(0, T) and ¥ € L2((0, T) x Q). Let
(4.4) X(t) = @(t)+/0 Ao(t, s)X(s)ds+/O A1(t,s)X(s)dW(s),

T

Y(t)=v(t)+ / [Ao(s, t)TY(s)+Ax(s, )T Z(s,t)]ds
(4.5) i

—/ Z(t,s)dW(s), te]o,T].

t

Then the following relation holds:

T T
(46) E /0 (Y(t).p(t)) dt = E / (6(1), X(t)) dt.

0

(4.5) — the adjoint equation of (4.4)
(4.6) — the duality between (4.4) and (4.5).



e A Comparison Theorem
Consider BSDEs: (k =1,2)
dY*(t) = —g* (e, Y*(2), Z())de + ZH(£)dW(2),

(4.7)
Y (T) = ¢~
Let
(4.8) g(t,s,y,z) < g(t,s,y,z), Y(t,s,y,2),
<& as
Then
(4.9) Yi(t) < Y3(t), tel0,T], as.

e [t6 formula is used in the proof.
e Does not rely on the comparison of FSDEs.



Theorem 4.2. For k =1,2,let gk : [0, T]? x R x R — R and

Yk(-) € L2(0, T; R) such that

(4.10) g'(t.5.y,0) < gX(t.5.y,Q), V(t.5..0).
W) <3(t),  te[0,T], as.

Let (YX(-), Z(,-)) be the adapted M-solution of BSIVE
T

VA = o (0 + [ (85 YH($), 245 ) ds

(4.11) t

g
_ / 7K (¢, 5)dW(s).

t

Then the following holds:

(4.12) Yi(t) < Y3(t), Vtelo, T



e Sub-Additivity and Convexity.
Let (Y(-),Z(-,-)) be the adapted solution of BSVIE

-
Y (t) = ¢(t) —I—/t g(t,s, Y(s),Z(s,t))ds

(4.13) )
_ / Z(t,5)dW(s).

Denote

(4.14) p(t; () = Y(t), te[0,T].

e (-) — p(t; —1(+)) is essentially a dynamic risk measure.



Proposition 4.4. Let g : [0, T]> x R x RY — R.
(i) Suppose (y, ) — g(t,s,y, () is sub-additive:

g(ta S\ 7 +Y27C1 + C2) S g(t757}/17<1) +g(t757y27<2)7
V(t,S) € [07 T]27 yYu,y2 € R> ClaCZ € Rd> a.s. ,
Then ¥(-) — p(t; () is sub-additive:

p(t: 1 () +92()) < p(t:91()) + p(t:92(+)),  t€[0, T], as.



(ii) Suppose (y,z) — g(t,s,y,() is convex:

g(t,s, Ay 4 (1= A)y2, A1 + (1 = N)(2)
< Ag(t,s,y1,C1) + (1= N)g(t, s, y2, (),
Y(t,s) € [0, T yi,2 €R, 1,6 €RY, as., Ae[0,1].

Then ¢(-) — p(t; 1(-)) is convex:

p(t; A1(-) + (L = A)2(0)) < Ap(tiba(+)) + (1 = Mp(t;02(+)),
tel0,T], as. , A€]0,1].

e Similar results hold if exchanging super-additivity and
sub-additivity, convexity and concavity, respectively.



5. Some Remarks:

e Regularity of adapted M-solutions:

T
Y(t) = ¢(t) +/ g(t,s, Y(s),Z(t,s),Z(s,t))ds
(1.6) t

—/TZ(t,s)dW(s), o, T].

Continuity of t — Y/(t) is not trivial. Malliavin calculus will be
involved.

e Necessary conditions for optimal control of FSVIEs can be
obtained.

e Existence of dynamic risk measure for general position
processes.



Thank You!



